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Safavynia SA, Ting LH. Sensorimotor feedback based on task-relevant
error robustly predicts temporal recruitment and multidirectional tuning of
muscle synergies. J Neurophysiol 109: 31–45, 2013. First published October
24, 2012; doi:10.1152/jn.00684.2012.—We hypothesized that motor out-
puts are hierarchically organized such that descending temporal com-
mands based on desired task-level goals flexibly recruit muscle
synergies that specify the spatial patterns of muscle coordination that
allow the task to be achieved. According to this hypothesis, it should
be possible to predict the patterns of muscle synergy recruitment
based on task-level goals. We demonstrated that the temporal recruit-
ment of muscle synergies during standing balance control was ro-
bustly predicted across multiple perturbation directions based on
delayed sensorimotor feedback of center of mass (CoM) kinematics
(displacement, velocity, and acceleration). The modulation of a mus-
cle synergy’s recruitment amplitude across perturbation directions
was predicted by the projection of CoM kinematic variables along the
preferred tuning direction(s), generating cosine tuning functions.
Moreover, these findings were robust in biphasic perturbations that
initially imposed a perturbation in the sagittal plane and then, before
sagittal balance was recovered, perturbed the body in multiple direc-
tions. Therefore, biphasic perturbations caused the initial state of the
CoM to differ from the desired state, and muscle synergy recruitment
was predicted based on the error between the actual and desired
upright state of the CoM. These results demonstrate that that temporal
motor commands to muscle synergies reflect task-relevant error as
opposed to sensory inflow. The proposed hierarchical framework may
represent a common principle of motor control across motor tasks and
levels of the nervous system, allowing motor intentions to be trans-
formed into motor actions.

sensorimotor feedback; electromyography; motor control; posture and
balance

MUSCLE SYNERGIES have been proposed as a neural mechanism
by which abstract, task-level motor goals (which do not have a
direct, one-to-one mapping to lower-level variables such as
joint angles) can be transformed into appropriate muscular
patterns that achieve those goals (Cheung et al. 2005; d’Avella
et al. 2003; Ivanenko et al. 2004, 2005; Saltiel et al. 2001; Ting
2007). As such, muscle synergies have been hypothesized to
represent motor modules that provide the nervous system with
a repertoire or library of actions that can be flexibly and
robustly combined to produce movements (Chvatal et al. 2011;
Ting and Macpherson 2005; Torres-Oviedo and Ting 2007,
2010; Tresch et al. 1999). In this scenario, a muscle synergy
would be the most basic unit of motor output, where the

descending temporal commands that recruit a muscle synergy
reflect a desired task-level goal. In turn, the muscle synergy
would specify a particular spatial pattern of muscle activation
across the body to coordinate multiple body segments in a way
that achieves the goal (van Antwerp et al. 2007; Zajac and
Gordon 1989). This suggests that complex spatiotemporal
patterns of muscle activity arise from a hierarchical arrange-
ment whereby low-dimensional temporal signals reflecting
task-level goals flexibly recruit a low-dimensional spatial set of
muscle synergies, generating complex spatiotemporal muscle
activation patterns for movement.

A number of studies have demonstrated that spatially fixed
muscle synergies form a modular basis for movement control,
allowing specific motor goals to be achieved. Spatially fixed
muscle synergies have been identified in a variety of voluntary
and reactive motor tasks in both humans (Cheung et al. 2009;
Chvatal et al. 2011; Clark et al. 2010; Hug et al. 2011;
Torres-Oviedo and Ting 2007) and other animal models (Hart
and Giszter 2004; Overduin et al. 2008; Saltiel et al. 2001; Ting
and Macpherson 2005; Torres-Oviedo et al. 2006; Tresch et al.
1999). The robustness of the low-dimensional spatial structure
across tasks with different dynamics (Cheung et al. 2005;
Chvatal et al. 2011; d’Avella and Bizzi 2005; Kargo et al.
2010) suggests that muscle synergies do indeed constrain the
spatial structure of motor outputs. Muscle synergy recruitment
has been further correlated to task-level motor outputs, such as
producing forces (McKay and Ting 2008; Ting and Macpher-
son 2005; Torres-Oviedo et al. 2006) or moving the body
center of mass (CoM) (Chvatal et al. 2011) in a particular
direction during reactive balance control.

Recent evidence suggests that the temporal recruitment of
muscle synergies is also low dimensional and modulated by
task-level goals. While typical decomposition algorithms leave
temporal recruitment patterns of spatially fixed muscle syner-
gies unconstrained, they nonetheless appear to be modulated
with task-level variables such as movement speed (Clark et al.
2010; d’Avella et al. 2008), mechanical constraints (Hug et al.
2011), and limb configuration (Cheung et al. 2009; Muceli
et al. 2010; Ting and Macpherson 2005; Torres-Oviedo et al.
2006; Torres-Oviedo and Ting 2010). However, in these cases,
the exact relationship between task-level variables and the
temporal features of muscle synergy recruitment has not been
examined. Alternately, low-dimensional structures of temporal
patterns of muscle activity for walking have been demonstrated
by identifying fixed temporal patterns of motor output while
leaving spatial patterns unconstrained (Cappellini et al. 2006;
Gizzi et al. 2011; Ivanenko et al. 2004, 2005). However, such
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fixed temporal structures cannot account for temporal modifi-
cations due to changing task-level goals, particularly in reac-
tive tasks (Safavynia and Ting 2012). Others have used mul-
tiple algorithms to first identify spatial structure and then
addressed the temporal recruitment of spatially fixed muscle
synergies by fixed temporal structures associated with feedfor-
ward motor commands for voluntary and reactive movements
(d’Avella and Bizzi 2005; d’Avella et al. 2008; Hart and
Giszter 2004). Together, the results of the aforementioned
studies suggest that there are low-dimensional neural con-
straints on the temporal as well as spatial generation of muscle
activity for movement.

If muscle synergies provide a mapping between task-level
goals and execution-level muscle activity patterns, it should
also be possible to predict their recruitment based on task-level
goals. However, in cyclic or feedforward tasks, there may be a
stereotypical sequence of task-level goals from one movement
to the next, making it difficult to demonstrate a clear relation-
ship between the temporal recruitment pattern and task-level
motor goals. In contrast, in reactive tasks, it is possible to
experimentally administer different perturbations that alter the
temporal patterns of muscle activity, allowing for the relation-
ship between muscle synergy recruitment and task-level goals
to be explicitly established. In reactive balance control, CoM
has been identified as an important task-level variable because
it is necessary to maintain the body CoM over the base of
support to maintain an upright stance (Horak and Macpherson
1996; Massion 1994). Temporal patterns of individual muscles
can be described by delayed task-level feedback of CoM
kinematics (displacement, velocity, and acceleration) in both
bipedal (Welch and Ting 2008, 2009) and quadrupedal (Lock-
hart and Ting 2007) balance control. In an initial study, we
recently used this sensorimotor transformation to reconstruct
but not predict temporal recruitment of muscle synergies in
human responses to discrete sagittal plane perturbations during
standing (Safavynia and Ting 2012). While promising, the
generality of task-level feedback recruitment of muscle syner-
gies to nonsagittal directions, its predictive power, and the
robustness of the model to more dynamic conditions where the
body does not start at the desired state remain unknown.

Here, we hypothesized that the temporal recruitment of
muscle synergies could be robustly predicted based on the error
between the actual and desired state of the CoM during
standing balance control, where we assumed the desired state
to be the upright, quasistatic condition. First, we hypothesized
that task-relevant error feedback of muscle synergies previ-
ously demonstrated in the sagittal plane would generalize to
nonsagittal directions. To test this, we administered multidi-
rectional discrete perturbations in 12 horizontal plane direc-
tions when subjects were standing quietly. Next, we hypothe-
sized that task-relevant error feedback of muscle synergies
would robustly predict responses to perturbations in dynamic
conditions. To test this, we designed biphasic perturbations that
first perturbed the body in the sagittal plane from rest and then
perturbed the body in 1 of 12 directions while the body was
already moving (Fig. 1). In this case, the elicited motor re-
sponse to achieve the desired, upright state must account for
both the prior motion of the body as well as the effects of the
perturbation. We first used the CoM feedback model to recon-
struct the temporal structure of muscle synergy recruitment
patterns throughout discrete perturbations in 12 horizontal

plane directions. For each muscle synergy, the identified re-
construction parameters in a single direction were used to
predict muscle synergy recruitment across all remaining 11
directions. Next, we identified a single set of feedback param-
eters based on the maximal tuning direction for each muscle
synergy in biphasic perturbations and tested whether these
parameters could predict complex temporal recruitment of
muscle synergies across all biphasic perturbations. Together,
our results demonstrate that sensorimotor feedback based on
task-relevant error robustly predicts muscle synergy recruit-
ment during standing balance control.
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Fig. 1. Example of perturbations. A: discrete ramp and hold perturbations were
administered in 12 equally spaced directions in the horizontal plane. Biphasic
perturbations featured either a forward or backward premovement before
moving in one of the same 12 directions administered in discrete perturbations.
B: example of kinematic characteristics for rightward perturbations. Black
arrows indicate the time and direction of premovement, shaded arrows indicate
rightward movement, and solid circles indicate platform deceleration. Shaded
boxes indicate the periods of rightward acceleration. Dist, distance; Vel,
velocity; Accel, acceleration.
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METHODS

Experimental Design

Twelve healthy subjects (6 men and 6 women, mean age � SD:
23 � 4 yr) participated in the experimental protocol, which was
approved by the Institutional Review Boards of Emory University and
the Georgia Institute of Technology. All perturbations were adminis-
tered using a custom two-axis perturbation platform commanded with
a Baldor NextMove ESB controller (Fort Smith, AR) through a
custom MATLAB interface.

Discrete ramp and hold translations were administered in 12
equally spaced directions in the horizontal plane; the direction of
movement was specified in which 0° indicated rightward platform
movement and the angle of perturbation increased in a counterclock-
wise manner. Discrete perturbations lasted 570 ms and were 12 cm in
displacement, 30 cm/s in peak velocity, and 0.5 g in peak acceleration;
data for a rightward perturbation are shown (Fig. 1B, left).

Biphasic perturbations were given in the same directions as discrete
perturbations but with either a forward or backward premovement
(Fig. 1A), similar to a target jump (Shafer et al. 2000). Biphasic
perturbations lasted 760 ms and began with either a forward or
backward premovement with an acceleration pulse of 0.25 g, resulting
in an initial perturbation velocity of 15 cm/s (Fig. 1B, middle and
right). A second acceleration was applied at 400 ms after the pertur-
bation onset corresponding to the time that the platform had moved
half of the total distance of discrete perturbations (6 cm). The second
acceleration, ranging from 0.25 to 0.75 g, was applied in 1 of 12
directions such that the total distance travelled (12 cm) and peak
velocity (30 cm/s) in biphasic perturbations was the same as in
discrete perturbations.

Data Collection

We randomly presented 5 repetitions of discrete perturbations over
12 directions for a total of 60 trials, as has been done in previous
studies (Safavynia and Ting 2012; Torres-Oviedo and Ting 2007).
After the discrete perturbations, 120 biphasic perturbations were
randomly presented (5 repetitions � 12 directions � 2 premovement
directions). To eliminate confounding effects of fatigue, subjects were
given a mandatory rest period of 5 min after every set of 60 trials.

Surface electromyographic (EMG) activity was recorded from 16
muscles over the right leg and trunk. The muscles recorded included
the rectus abdominis (REAB), tensor fascia lata (TFL), tibialis ante-
rior (TA), semitendinosus (SEMT), long head of the biceps femoris
(BFLH), rectus femoris (RFEM), peroneus longus (PERO), medial
gastrocnemius (MGAS), lateral gastrocnemius (LGAS), erector spi-
nae (ERSP), external oblique (EXOB), gluteus medius (GMED),
vastus lateralis (VLAT), vastus medialis (VMED), soleus (SOL), and
adductor magnus (ADMG). In three subjects, SEMT activity was
missing due to faulty leads. Muscles were recorded using bipolar
electrodes placed �2.5 cm apart over the belly of each muscle and
oriented in the direction of the muscle fibers (Basmajian et al. 1980).
Raw EMG data were collected at 1,080 Hz and then processed
according to custom MATLAB routines. Data were high-pass filtered
at 35 Hz, de-meaned, rectified, and then low-pass filtered at 40 Hz.

Kinematic and kinetic data were collected for the estimation of
CoM kinematic variables. Kinematic data were collected at 120 Hz
using an eight-camera Vicon motion capture system (Centennial, CO)
and a custom 25-marker set that included head-arms-trunk, thigh,
shank, and foot segments. Kinetic data were collected at 1,080 Hz
from force plates under the feet (AMTI, Watertown, MA). CoM
displacement and velocity were calculated from kinematic data as a
weighted sum of segmental masses (Winter 2005); to avoid uncer-
tainty associated with second-order derivatives of kinematic data
(Risher et al. 1997), CoM acceleration was computed with respect to
the feet using ground reaction forces (force � mass � acceleration),
as has been previously reported (Welch and Ting 2008, 2009).

Muscle Synergy Extraction

EMG data structure. We extracted muscle synergies from EMG
data in an epoch corresponding to the initial long-latency automatic
postural response beginning 100 ms after the onset of multidirectional
perturbation acceleration (Horak and Macpherson 1996). In discrete
perturbations, we used a 170-ms epoch beginning 100 ms from the
onset of the initial acceleration, corresponding to the initial burst of
EMG activity elicited by that acceleration. In biphasic perturbations,
we used a slightly shorter 160-ms epoch beginning 100 ms from the
onset of the second acceleration because the acceleration duration was
shorter (Fig. 2, shaded boxes). Within these epochs, EMG data were
parsed into 10-ms bins, and mean activity in each bin was calculated.
Three data matrices were assembled (one for each perturbation type:
discrete, forward biphasic, and backward biphasic) that consisted of
binned EMG activity normalized to peak activity in discrete pertur-
bations. We constructed our three data matrices to have the dimen-
sions of m � s, where m is the number of muscles and s is the number
of samples (bins � directions � repetitions).

Muscle synergy extraction algorithm. We used non-negative matrix
factorization to extract muscle synergies from EMG activity as pre-
viously reported (Chvatal et al. 2011; Lee and Seung 1999; Safavynia
and Ting 2012). Briefly, the non-negative matrix factorization algo-
rithm chooses non-negative matrices (W and C) such that the activity
of a muscle (Mi) is reconstructed by linearly combining muscle
weightings (Wi) with temporal recruitment patterns (C) according to
the following equation:

Mi � �
j�1

Nsyn

wi,jC j (1)

For the spatially fixed muscle synergies used here and in other studies
(Chvatal et al. 2011; Hart and Giszter 2004; Kargo et al. 2010;
Safavynia and Ting 2012; Torres-Oviedo and Ting 2007, 2010), the
muscular composition W does not change, although the recruitment
coefficient C can vary at each time point for each trial. We scaled the
rows of the data matrices to have unit variance, weighting the variance
of each muscle equally for muscle synergy extraction; this normal-
ization factor was then removed after extraction to return the data to
the original scaling between 0 and 1.

Choosing the number of muscle synergies. As previously done, we
used a combination of global and local criteria to determine the fewest
number of muscle synergies (Nsyn) to faithfully reconstruct the EMG
data matrices (Chvatal et al. 2011; Safavynia and Ting 2012; Torres-
Oviedo and Ting 2007, 2010). Goodness of fit between actual and
reconstructed EMG was determined using variability accounted for
(VAF), which is defined as 100 times the square of Pearson’s
uncentered correlation coefficient (Zar 1999). We increased Nsyn as
long as total VAF and VAF of individual muscles improved; these
values were further validated using factor analysis (Tresch et al.
2006). Discrepancies in Nsyn obtained from VAF and factor analysis
were resolved by additional criteria based on individual muscle
reconstruction VAF values. We further verified Nsyn against a shuffled
matrix of the same data using bootstrapping (Cheung et al. 2009;
Chvatal et al. 2011) to ensure that the VAF confidence intervals of
muscle synergies extracted from actual versus shuffled data were
nonoverlapping.

Muscle Synergy Analysis

Muscle synergy tuning curves. We constructed tuning curves for
muscle synergies recruitment with respect to both platform and CoM
acceleration direction based on the average magnitude during the
middle eight bins of each EMG epoch. Previously, we have used
platform direction rather than CoM acceleration direction as the
independent variable in muscle synergy tuning curves (Chvatal et al.
2011; Ting and Macpherson 2005; Torres-Oviedo and Ting 2007,
2010). Because the CoM acceleration directly opposes the platform
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acceleration direction in discrete perturbations, they generate identical
muscle synergy tuning curves but with opposite directional tuning.
However, in biphasic perturbations, the body is already moving at the
time of the perturbation and CoM kinematics (displacement, velocity,
and acceleration) differ in both sign and direction compared with the
perturbation. Therefore, to test whether CoM kinematics determine
muscle synergy recruitment, we plotted muscle synergy recruitment

versus CoM (and not platform) acceleration direction in a bin 100 ms
before the EMG epoch. We defined the preferred direction of recruit-
ment as the CoM acceleration direction that corresponded to the
maximum averaged recruitment of a muscle synergy, rounded to the
nearest multiple of 30°.

Comparison of muscle synergy structure. We determined the struc-
tural consistency of muscle synergies across perturbation types as in
previous studies (Chvatal et al. 2011; Safavynia and Ting 2012). We
calculated Pearson’s correlation coefficients (r) between pairs of
muscle synergies: for subjects that had 16 muscle recordings, we
considered a pair of muscle synergies to have consistent structure if
r � 0.623, which corresponds to the critical value of r2 for 16
elements at P � 0.01 (r2 � 0.388); for the 3 subjects that had 15
muscle recordings, muscle synergies with r � 0.641 were considered
consistent (r2 � 0.411, P � 0.01). Critical values of r were validated
against a distribution of chance r values (Berniker et al. 2009). Muscle
synergies extracted from discrete perturbations were used to recon-
struct EMG activity throughout all perturbation types and directions,
yielding observed temporal recruitment patterns.

Feedback Model Reconstructions

We reconstructed muscle synergy recruitment patterns using a
“jigsaw” model based on delayed feedback of CoM kinematics as in
our previous studies (Welch and Ting 2009, Safavynia and Ting 2011)
(Fig. 3). An implicit assumption in this model is that the desired body
state is to remain in an upright body configuration, and the errors in
CoM kinematics are continuously corrected in a manner that restores
the desired state. Using CoM horizontal displacement, velocity, and
acceleration, we reconstructed recruitment patterns for each muscle
synergy [CWi

(t), where t is time] according to the following equation:

Cwi
(t) � <kdd(t � �) � kvv(t � �) � kaa(t � �)= (2)

where kd is feedback gain on CoM displacement (d), kv is feedback
gain on CoM velocity (v), and ka is feedback gain on CoM acceler-
ation (a), � is a common time delay representing delays in neural
transmission and processing time, and the floor brackets designate
half-wave rectification of the reconstructed muscle synergy recruit-
ment pattern (Ting et al. 2012).

Temporal recruitments of muscle synergies were averaged across
repeated trials for each direction and perturbation type. Because the
frequency content of EMG reconstructed by muscle synergies was
lower than that of measured EMG, observed muscle synergy recruit-
ment patterns were low-pass filtered at 20 Hz to match the frequency
content of input and output signals and resampled at 1,000 Hz. Each
component of CoM motion was averaged, interpolated, and resampled
at 1,000 Hz to match sampling rates of inputs and outputs to the
model. All reconstructions were performed on muscle synergy recruit-
ment patterns from 50 ms before the perturbation onset to 500 ms after
the perturbation offset. This corresponded to a 1.07-s time interval for
discrete perturbations and a 1.26-s time interval for biphasic pertur-
bations.

We identified four model parameters that best reconstructed the
average temporal recruitment of each muscle synergy. The model
identified the three feedback gains (ki) and � that best reproduced the
averaged muscle synergy recruitment pattern according to the follow-
ing cost function:

min��s�0

tend em
2 dt � �k max��em��� (3)

The first term penalized the squared error (em) between recorded and
simulated muscle synergy recruitment patterns throughout the pertur-
bation. The second term penalized the maximum error between
simulated and recorded data at any point in time. The ratio of weights
(�s and �k) was 10:1 based on prior work (Welch and Ting 2009) and
more heavily weighted the integrated error across time rather than the
maximum error at any given time point.
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Fig. 2. Example of postural responses to rightward discrete and biphasic
perturbations. Kinematics of center of mass (CoM) motion in the frontal (x)
plane are shown for discrete, forward biphasic, and backward biphasic pertur-
bations. The directions of CoM kinematic components relative to the feet
during rightward platform acceleration (shaded region) were oriented in
similar directions during discrete perturbations. However, in biphasic pertur-
bations, the direction and magnitude were more dissociated. Muscular re-
sponses lagged behind CoM acceleration onset by �100 ms (compare shaded
boxes with black dotted lines) and varied across perturbation types. Disp and
d, displacement; v, velocity; a, acceleration; EMG, electromyograph; VLAT,
vastus laturalis; TA, tibialis anterior; MGAS, medial gastrocnemius.
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We first reconstructed temporal recruitment patterns of each mus-
cle synergy in its preferred tuning direction using the projection of
CoM kinematics in the preferred tuning direction. We quantified the
similarity between actual and reconstructed muscle synergy recruit-
ment patterns using both r2 and VAF, as r2 is more sensitive to the
contour of traces and VAF is more sensitive to the magnitude of
traces. Muscle synergy recruitment patterns were considered well
reconstructed when r2 � 0.5 or VAF � 75% (Safavynia and Ting
2012).

Prediction of Temporal Recruitment of Muscle Synergies

For each perturbation type, we then predicted temporal muscle
synergy recruitment patterns for the remaining 11 directions using
feedback gains identified from reconstructions for each muscle syn-
ergy in the preferred CoM tuning direction. Based on a cosine tuning
principle, we used the projection of CoM kinematic vectors along the
preferred direction in Eq. 2 to generate a predicted muscle synergy
recruitment pattern for all 11 nonpreferred perturbation directions.
Feedback gains for each muscle synergy were fixed to the values
identified in the preferred direction for each perturbation type. As in
reconstructions, muscle synergy recruitment patterns were considered
well predicted when r2 � 0.5 or VAF � 75% (Safavynia and Ting
2012).

RESULTS

Differences in Postural Responses to Discrete and Biphasic
Perturbations

Biphasic perturbations allowed us to test the robustness of
our predictions because they evoked different combinations of
CoM kinematics and EMG responses compared with discrete
perturbations that began from rest. Whereas in discrete pertur-
bations, the CoM displacement, velocity, and acceleration are
always aligned, the premovements of the biphasic perturba-
tions allowed us to examine conditions where these vectors
could be oriented in different directions (e.g., Fig. 2, shaded
boxes) and correlate them with differences in EMG activity.
Moreover, the magnitude of the CoM kinematic vectors as well

as evoked EMG activity in response to a multidirectional
perturbation also varied based on the direction of premovement
in biphasic perturbations. For example, TA was active during
all rightward perturbations (Fig. 2, shaded boxes); however,
the magnitude of activity was lower after forward premove-
ments and higher after backward premovements compared
with discrete perturbations. In contrast, MGAS was not active
during rightward perturbations but active during backward
premovements.

Structural Consistency of Muscle Synergies Across
Perturbation Types and Subjects

Across all subjects, four to seven muscle synergies were
independently identified in discrete and biphasic perturbations.
For each perturbation type, muscle synergies yielded similar
total and muscle VAF during the response to multidirectional
platform accelerations (Table 1, within condition). VAFs of
muscle synergies from actual data were 7.3 � 3.3 confidence
intervals higher than VAF of the same number of muscle
synergies extracted from shuffled data (Fig. 4A).

Across all subjects, 64 of 71 (90%) muscle synergies ex-
tracted from discrete perturbations were found to have highly
consistent spatial structure compared with muscle synergies
extracted from biphasic perturbations (0.65 � r � 0.99, r �
0.87 � 0.10; Fig. 4B). Because muscle synergies were consis-
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Fig. 3. Reconstruction of temporal patterns of
muscle synergy recruitment using delayed
CoM feedback. Recorded CoM kinematic vari-
ables were multiplied by a feedback gain (k) at
a common time delay (�), summed, and half-
wave rectified to reconstruct muscle synergy
recruitment patterns. [Adapted with permission
from Safavynia and Ting (2012).]

Table 1. VAF of muscle synergy reconstructions

Discrete Biphasic Forward
Biphasic

Backward

VAF Total Muscle Total Muscle Total Muscle

Within condition 87 � 3 83 � 6 89 � 3 85 � 12 89 � 3 82 � 14
Discrete 87 � 3 83 � 6 85 � 6 83 � 5 82 � 4 81 � 6

Values (in %) are means � SD of variability accounted for (VAF). Within
condition, reconstructions of electromyographs using muscle synergies ex-
tracted from each condition individually; discrete, reconstructions of electro-
myographs using muscle synergies extracted from discrete perturbations.
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tent across perturbation types, we used muscle synergies ex-
tracted from discrete perturbations to reconstruct EMGs over
all perturbation types and directions, generating temporal pat-
terns of recruitment. Individual muscle synergies extracted
from discrete perturbations also yielded high total and muscle
VAF in biphasic perturbations (Table 1, discrete).

Muscle synergy structure and tuning direction were consis-
tent across subjects (Fig. 5). Twelve different muscle synergies
were identified across all subjects; 5 of 12 muscle synergies
were consistent in at least 9 of 12 subjects. W1 was identified
in all 12 subjects (Fig. 5A); W1 was composed mainly of calf
muscles (MGAS, LGAS, and SOL) and was tuned to forward-
rightward CoM acceleration directions (Fig. 5B). W2 was
identified in 11 subjects and composed mainly of quadriceps
muscles (RFEM, VLAT, and VMED; Fig. 5C). In 8 of 11
subjects, W2 had two local maxima, reflecting two preferred
tuning directions, largely to backward CoM acceleration direc-
tions (forward platform directions), but also, to a lesser extent,
in forward CoM acceleration directions (Fig. 5D, solid traces).
In 3 of 11 subjects, W2 was only tuned in response to backward
CoM acceleration directions (Fig. 5D, shaded traces).

Muscle Synergy Tuning Across Perturbation Types

For all subjects, the preferred tuning direction of each
muscle synergy was similar across perturbation types, but the
magnitude and breadth of tuning varied when plotted with
respect to platform direction. Across all subjects, 63 of 71
(89%) muscle synergies had preferred tuning directions that
were within 30° of each other across perturbation types. For
example, in subject 6, muscle synergies W1–W4 had similar
preferred tuning directions but higher recruitment in discrete
versus biphasic perturbations (Fig. 6). W3 was more broadly
tuned in discrete perturbations; conversely, W1 was more
broadly tuned in forward biphasic perturbations. While some
muscle synergies (i.e., W1 and W3) had a single preferred
tuning direction, others (i.e., W2 and W4–W6) had a second
peak in tuning that also varied in magnitude across perturbation
types.

Differences in the breadth of muscle synergy tuning curves
were largely resolved when data were plotted with respect to
CoM (and not perturbation) acceleration direction (Fig. 7). For
example, in subject 8, W1 was more broadly tuned in forward
biphasic perturbations and more narrowly tuned in backward
biphasic perturbations when plotted with respect to platform
direction. Peak tuning direction differed by �30° between
discrete (Fig. 7B, black traces) and biphasic (Fig. 7B, green and
purple traces) perturbations. However, when plotted against
CoM acceleration direction, W1 tuning curves became more
similar in breadth across perturbation types (Fig. 7C) and peak
tuning directions were more aligned. Remaining differences in
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the magnitude of muscle synergy recruitment reflected differ-
ences in CoM acceleration magnitude in discrete and biphasic.
For example, in subject 8, the magnitude of W1 recruitment in
the peak tuning direction of 60° was smallest in backward
biphasic perturbations, where the CoM acceleration in that
direction was also smallest (Fig. 7D).

Muscle Synergy Recruitment Is Well Reconstructed by
Delayed CoM Feedback

Temporal patterns of muscle synergy recruitment in the
preferred tuning direction could be equally well recon-
structed in both discrete and biphasic perturbations by
delayed feedback based on the projection of CoM kinemat-
ics along that direction (Fig. 8). For example, in subject 6,
W2 had a single burst along a forward-leftward (120°)
discrete perturbation that caused the CoM to accelerate in
the backward-rightward (300°) direction. In biphasic pertur-
bations, this same muscle synergy was recruited at a very
low magnitude during forward premovements that acceler-
ated the body backward but was then further recruited when

the perturbation changed direction, causing the CoM to
accelerate along the preferred direction of W2. Note that W2

was not recruited in backward premovements where the
CoM accelerated in the backward direction. Over all sub-
jects, 53 of 71 muscle synergies (75%) were well recon-
structed in their preferred tuning direction (r2 � 0.68 �
0.18, median r2 � 0.71, VAF: 87 � 6%, median VAF:
88%). Time delays were between 90 and 120 ms for all
reconstructions, consistent with postural delays described in
the literature (Horak et al. 1989; Horak and Macpherson
1996). The feedback gains used for a given muscle synergy
across subjects were reasonably consistent, with coefficients
of variation ranging from 0.05 to 1.22 (median coefficient of
variation: 0.40). Moreover, if a particular muscle synergy
was found to be dominated by one kinematic variable (e.g.,
velocity feedback), this was also true across subjects. For
the 18 muscle synergies that were not well reconstructed, 17
muscle synergies had major contributions of muscles that
had actions at the hip and trunk (ERSP, EXOB, REAB, and
GMED; e.g., Fig. 8, W5).
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CoM Feedback Predicts Muscle Synergy Recruitment Across
Changing Perturbation Directions

We were able to predict variations in the temporal recruit-
ment patterns of each well-reconstructed muscle synergy
across the remaining 11 perturbation directions using a fixed
set of feedback gains based on differences in CoM kinematics
along the preferred direction for each perturbation type. For
example, in subject 1, muscle synergy W1 was maximally
tuned to the 60° CoM acceleration direction, corresponding to
240° perturbations, from which feedback gains (kd, kv, and ka)
were found (Fig. 9, B–D, red traces). The same gains predicted
changes in both the magnitude and temporal recruitment pat-
terns of that muscle synergy across other perturbation direc-
tions (Fig. 9, B–D, blue traces). Specifically, the magnitude

decreased in adjacent perturbation directions (180–330°) and
was predicted to be inhibited in perturbations in the opposite
direction (0 –150°) until the deceleration of the platform
(Fig. 9B, solid circles). For biphasic perturbations, W1 was
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predicted to be inhibited during forward premovements
(Fig. 9C), predicted to be recruited in backward premove-
ments (Fig. 9D), and predicted to have varying temporal
recruitment patterns during the second, multidirectional per-
turbations (Fig. 9, C and D).

For well-reconstructed muscle synergies with a single pre-
ferred tuning direction, goodness of fit was quantified for
predictions of muscle synergy recruitment across all subjects,
directions, and perturbation types (r2 � 0.37 � 0.28, median
r2 � 0.35, VAF � 65 � 27%, median VAF � 74%). Although
the majority of the predictions were not considered well pre-
dicted by our established criteria, predictions of muscle syn-
ergy quiescence are subject to error in both r2 and VAF, as
actual data during quiescent periods are noisy and of low
magnitude (cf. Fig. 9B, 150° and 330° perturbations). Predic-
tions of well-reconstructed muscle synergies with double tun-

ing directions had similar goodness of fit values across sub-
jects, directions, and perturbation types (r2 � 0.36 � 0.28,
median r2 � 0.33, VAF � 62 � 28%, median VAF � 73%).

For muscle synergies that had two preferred tuning direc-
tions, identified feedback gains in the secondary tuning direc-
tion predicted muscle synergy recruitment in directions nearly
opposite to the primary tuning direction (Fig. 10). In the
example shown in Fig. 10A, W2 had a large CoM acceleration
tuning at 300° and a smaller but distinct tuning at 90°. Predic-
tions of W2 recruitment based on CoM tuning in 300° matched
actual recruitment patterns in perturbations eliciting CoM ki-
nematics near the preferred tuning direction (Fig. 10B, 30–
180°, red/blue traces). However, recruitment in opposing di-
rections (210–0°) was not predicted. This secondary recruit-
ment pattern could be predicted using feedback gains derived
from reconstructions in the secondary tuning direction of 90°
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(Fig. 10B, orange/green traces). The differences in the feed-
back gain magnitudes for the two tuning direction demonstrate
that W2 was responsive to backward CoM acceleration and
position and forward CoM velocity.

Therefore, we combined predictions from one half of the
directions using one set of feedback gains and the other half of
the directions using the other set of feedback gains. Across all
subjects and directions, predictions of muscle synergy recruit-
ment in discrete perturbations improved when using two sets of
feedback gains (r2 � 0.47 � 0.26, median r2 � 0.49, VAF �
71 � 19%, median VAF � 76%) compared with one set of
feedback gains (r2 � 0.30 � 0.30, median r2 � 0.20, VAF �
50 � 32%, median VAF � 60%). Predictions in biphasic
perturbations using two sets of feedback gains were not quan-
tified because no single prediction could account for the entire

time course of the recruitment pattern due to the changing
platform direction.

We further predicted the directional tuning of muscle syn-
ergies based on one set of feedback gains identified for each
preferred tuning direction. Using a cosine tuning principle,
muscle synergy recruitment was predicted by the projection of
CoM kinematics in the preferred direction, and the level of
prediction was similar across all subjects and muscle synergies
(r2 � 0.62 � 0.28, median r2 � 0.73, VAF � 78 � 18%,
median VAF � 83%). For example, in subject 1, feedback
gains identified from the preferred tuning direction predicted
the directional tuning of muscle synergy W1 over all directions
(Fig. 11, top). Muscle synergy W2 in subject 2 required two
sets of feedback gains (cf. Fig. 10) to predict the tuning peaks
in the forward and backward directions.

Fig. 9. Predictions of muscle synergy recruitment patterns across directions based on feedback gains identified from reconstructions in one preferred tuning
direction. A: W1 in subject 1, which had one preferred CoM acceleration tuning direction. B: CoM feedback reconstruction and predictions of discrete
perturbations. Note that CoM acceleration direction is opposite platform direction. C: CoM feedback reconstruction and predictions of forward biphasic
perturbations. D: CoM feedback reconstruction and predictions of backward biphasic perturbations. Numbers indicate r2 (top) and VAF (bottom) values
for predictions. Black arrows indicate the time and direction of premovement, shaded arrows indicate time and direction of movement, and solid circles
indicate platform deceleration.
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DISCUSSION

Summary

Our results demonstrate that during perturbations to standing
balance, the temporal recruitment of spatially fixed muscle
synergies can be robustly predicted by error between the
desired and actual state of the CoM, which we hypothesize to
be the task-level goal for standing balance control. Our work
demonstrates that the temporal structure of motor outputs is
constrained by task-relevant error of CoM kinematics, whereas
the spatial structure is constrained by a small set of direction-
ally tuned muscle synergies. Moreover, despite differences in
the mechanics of the body in the sagittal and frontal planes
(Winter 1995), a common sensorimotor feedback transforma-
tion based on the on error between the desired state and the
actual state of the CoM robustly reconstructed and predicted
the recruitment of muscle synergies. Because the errors were
based on the projection of CoM kinematics in a given direc-
tion, muscle synergies were predicted to have cosine tuning
functions. These predictions were robust to biphasic perturba-
tions where the prior movement of the body as well as the
effects of the perturbation affected the required response to

maintain balance. Taken together, our work supports a hierar-
chical and low-dimensional organization of the neuromotor
system whereby temporal commands based on task-level vari-
ables recruit muscle synergies that coordinate muscles in a way
to achieve that goal. This organization may reflect a general
mechanism for motor control that allows the nervous system to
transform motor intention to action.

The Temporal Structure of Motor Commands Is Determined
by Task-Level Goals

Our results support the idea that the temporal structure of
task-level motor commands is independent from mechanisms
that allow those tasks to be executed (Bernstein 1967). Because
CoM kinematics are abstract task-level variables, they must be
estimated by integrating proprioceptive, visual, and vestibular
information (Green et al. 2005; Horak and Macpherson 1996;
Peterka 2002), presumably in the brain stem and higher neural
centers. Previous work in balance control has shown that
muscle synergies are directionally tuned and produce consis-
tent spatial patterns of motor outputs that function to move the
CoM in specific directions (Chvatal et al. 2011; Ting and
Macpherson 2005; Torres-Oviedo et al. 2006; Torres-Oviedo
and Ting 2007, 2010). In contrast to previous studies, we were
able to reconstruct the fine temporal features of muscle synergy
recruitment in multiple perturbation directions and during
perturbations that change direction. Temporal and spatial fea-
tures of muscle synergy recruitment were predicted using one
or two sets of feedback gains for each muscle synergy, based
on cosine tuning functions centered on the preferred recruit-
ment directions. The robustness of the predictions was sur-
prising as the dynamics of the body differ greatly in frontal
and sagittal planes (Bingham et al. 2011). However, our
results confirm those of prior results in postural control
demonstrating that different components of activity in the
same muscle are independently tuned to pitch versus roll
perturbations (Gruneberg et al. 2005).

Task-level commands may both activate and inhibit the
recruitment of muscle synergies, as periods of both muscle
synergy recruitment and quiescence were robustly predicted. In
our model, the inhibition of a muscle synergy occurs when the
sum of the weighted CoM kinematic signals is negative. The
resulting temporal recruitment signal is then half-wave recti-
fied such that negative commands become zero. This is con-
sistent with a neuronal summation mechanism of synaptic
inputs of task-level variables that inhibits the membrane po-
tential below the spiking threshold. Thus, temporal recruitment
of muscle synergies may be defined and constrained by the
achievement of desired task-level goals.

Furthermore, the robustness of the sensorimotor feedback
transformation to predict muscle synergy recruitment across
dynamic states indicates that temporal motor commands reflect
task-relevant error as opposed to sensory inflow. Previously,
correlations between task-level variables and muscle activity,
but not muscle stretch, were found across different discrete
perturbation types (Allum et al. 2003; Carpenter et al. 1999;
Diener et al. 1983; Gollhofer et al. 1989; Nashner 1976).
Similarly, we have previously shown that the same muscle
synergy could be recruited in response to different perturba-
tions that induce stretch in different muscles but require the
CoM to be moved in the same direction (Chvatal et al. 2011;
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Torres-Oviedo et al. 2006). Here, we further demonstrate that
the evoked response to a perturbation reflects the task-level
goal (e.g., CoM kinematics) and not simply the sensory inflow
due to the perturbation (Kutch and Valero-Cuevas 2012). For
example, in double-tuned muscle synergies, the secondary
tuning direction was typically opposite to the primary tuning
direction. It is highly unlikely that the local biomechanical
effects of the perturbation could account for the evoked muscle
activity in both tuning directions. Furthermore, our novel
biphasic perturbations could perturb the body in a direction
orthogonal to the direction of ongoing body motion. Thus, a
direct response to the sensory inflow of the most recent
perturbation would be insufficient to maintain postural stability
(Mergner 2010; Pai and Patton 1997; Pai et al. 1998; van der
Kooij and de Vlugt 2007). We showed that muscle synergy
recruitment (and not simply muscle activity) could be recruited
by task-level error feedback that integrates both the actual and
desired state of the body under dynamic, multidirectional
conditions imposed by biphasic perturbations. Similarly, dur-
ing target jumps in a multidirectional reaching task, temporally
fixed synergies are modulated as a function of both the initial
and desired movement direction (d’Avella et al. 2011).

There may be interactions between task-level sensorimotor
feedback and biomechanical factors that modulated the appar-
ent feedback gains identified. The robustness of our predictions
across directions was surprising because changes in feedback
gains are necessary to maintain postural stability in the sagittal
versus frontal planes due to biomechanical differences (Bing-
ham et al. 2011); such changes appear to be resolved by the
cosine tuning function. However, feedback gains were differ-
ent during biphasic versus discrete perturbation sets, which
could be due to the fact that the acceleration magnitude in the
preferred tuning direction could be either lower or higher in
biphasic perturbations (depending on the direction of the sec-
ond perturbation), although the total displacement and peak
velocities were matched in both sets. The variations in feed-
back gains were consistent with model predictions and exper-
imental results suggesting that the feasible range of feedback
gains to maintain stability are larger when perturbation accel-
erations are smaller (Bingham et al. 2011). These variations
could also be due to differences in the sensory signals encoding
body motion, such as the history- and time-dependent proper-
ties of muscle spindles and other sensory organs (Campbell and
Moss 2002, 2000; Getz et al. 1998; Haftel et al. 2004; Nichols
and Cope 2004).

Muscle synergies may be flexibly recruited in balance con-
trol based on multiple task-level variables. We found that some
muscle synergies were recruited by more than one direction of
CoM motion, suggesting that they are recruited by more than
one task-level command. For example, quadriceps muscle
synergies often had two preferred tuning directions and re-
quired two separate sensorimotor transformations based on
CoM kinematics to predict recruitment in forward and back-
ward directions. The primary recruitment of the quadriceps
muscle synergy is consistent with its function of moving the
CoM forward (Chvatal et al. 2011), whereas the secondary
recruitment may provide stability to the limb (Neptune et al.
2009). There were also a few muscle synergies dominated by
trunk muscles that were not well reconstructed by CoM feed-
back and have been found to be highly variable in their
recruitment across various postural perturbation studies (Ch-

vatal et al. 2011; Safavynia and Ting 2012; Torres-Oviedo and
Ting 2007, 2010). Although we did not record from enough
muscles to explicitly study muscle coordination at the trunk, it
is possible that they are recruited to maintain the vertical
orientation of the body, which may be a concurrent or second-
ary task-level goal for balance (Kluzik et al. 2005; Macpherson
et al. 1997; Massion 1994).

Hierarchical Framework for Motor Control

We propose a hierarchical framework where the temporal
and spatial structure of motor outputs are distinct, allowing for
the separation of motor goals from their implementation across
body segments with different biomechanical properties. Simi-
larly, the spinal central pattern generator for locomotion has
been demonstrated to have independent circuits governing the
locomotor rhythm and the spatial coordination of muscles. This
hierarchical arrangement allows for flexibility between the
desired timing of movement and the specific muscles involved
in generating the movement (McCrea and Rybak 2008). Like-
wise, in the cerebral cortex, neurons encoding the desired
motor goal have been demonstrated to be independent of the
muscles that are used to generate the motion (Grafton and
Hamilton 2007; Rizzolatti et al. 1987). Such flexibility would
be supported by a hierarchical structure where different muscle
synergies could be recruited to achieve a common, task-level
goal. This flexibility has been demonstrated in balance control,
where different muscle synergies can be used to recover
balance by using either ankle or hip torque predominantly
(Torres-Oviedo and Ting 2007). Alternatively, different neural
pathways may recruit a common set of muscle synergies in
different tasks that share similar task-level goals. For example,
the same set of muscle synergies for walking can be recruited
during both voluntary and reactive modifications to locomotor
muscle activity (Chvatal and Ting 2012). Similarly, in acute
frog preparations, the same muscle synergies are recruited in
different behaviors mediated by cortical, midbrain, or spinal
circuits (Hart and Giszter 2004; Roh et al. 2011).

The proposed hierarchical framework may represent a com-
mon principle of motor control across motor tasks and levels of
the nervous system. The recruitment of muscle synergies has
been shown to be modulated by task variables across tasks,
such as walking speed for locomotion (Chvatal and Ting 2012;
Clark et al. 2010), CoM for balance control (Chvatal et al.
2011; Torres-Oviedo et al. 2006), and speed and direction for
reaching movements (d’Avella et al. 2006, 2008, 2011). Mus-
cle synergies have also been hypothesized to be encoded across
the neuraxis, including the spinal cord for locomotion and
primitive movements (Bizzi et al. 1991; Drew et al. 2008;
Kargo et al. 2010; Roh et al. 2011; Saltiel et al. 2001), brain
stem for postural control (Chvatal et al. 2011; Torres-Oviedo
et al. 2006; Torres-Oviedo and Ting 2007), and motor cortex
for grasping (d’Avella et al. 2008; Overduin et al. 2008).
Accordingly, task-level variables are also encoded at multiple
levels of the neuraxis. For example, pyramidal neurons in the
motor cortex have been shown to respond to task-level vari-
ables such as end-point force, velocity, movement direction,
and hand location (Georgopoulos et al. 1986; Sergio and
Kalaska 1997). Neurons in the reticular formation have been
shown to respond to task-level changes in postural equilibrium
(Stapley and Drew 2009). Moreover, limb orientation can be
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encoded across the neuraxis, including reticular formation
(Deliagina et al. 2008), the motor cortex (Scott and Kalaska
1997), and the dorsal spinocerebellar tract (Poppele et al.
2002). Therefore, the recruitment of muscle synergies that
specify spatial coordination of muscles by task-level variables
is plausible given the known structure and function of the
nervous system, allowing abstract task-level goals to be flex-
ibly transformed into appropriate muscular patterns that
achieve those goals.
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